Knotting and unknotting proteins in the chaperonin cage: Effects of the excluded volume
نویسندگان
چکیده
Molecular dynamics simulations are used to explore the effects of chaperonin-like cages on knotted proteins with very low sequence similarity, different depths of a knot but with a similar fold, and the same type of topology. The investigated proteins are VirC2, DndE and MJ0366 with two depths of a knot. A comprehensive picture how encapsulation influences folding rates is provided based on the analysis of different cage sizes and temperature conditions. Neither of these two effects with regard to knotted proteins has been studied by means of molecular dynamics simulations with coarse-grained structure-based models before. We show that encapsulation in a chaperonin is sufficient to self-tie and untie small knotted proteins (VirC2, DndE), for which the equilibrium process is not accessible in the bulk solvent. Furthermore, we find that encapsulation reduces backtracking that arises from the destabilisation of nucleation sites, smoothing the free energy landscape. However, this effect can also be coupled with temperature rise. Encapsulation facilitates knotting at the early stage of folding and can enhance an alternative folding route. Comparison to unknotted proteins with the same fold shows directly how encapsulation influences the free energy landscape. In addition, we find that as the size of the cage decreases, folding times increase almost exponentially in a certain range of cage sizes, in accordance with confinement theory and experimental data for unknotted proteins.
منابع مشابه
Structural Features of the GroEL-GroES Nano-Cage Required for Rapid Folding of Encapsulated Protein
GroEL and GroES form a chaperonin nano-cage for proteins up to approximately 60 kDa to fold in isolation. Here we explored the structural features of the chaperonin cage critical for rapid folding of encapsulated substrates. Modulating the volume of the GroEL central cavity affected folding speed in accordance with confinement theory. Small proteins (approximately 30 kDa) folded more rapidly as...
متن کاملArai and Shinichi Hirai Knotting / Unknotting Manipulation of Deformable Linear Objects
Here, we propose a planning method for knotting/unknotting of deformable linear objects. First, we propose a topological description of the state of a linear object. Second, transitions between these states are defined by introducing four basic operations. Then, possible sequences of crossing state transitions, i.e. possible manipulation processes, can be generated once the initial and the obje...
متن کاملKnotting/Unknotting Manipulation of Deformable Linear Objects
Here, we propose a planning method for knotting/unknotting of deformable linear objects. First, we propose a topological description of the state of a linear object. Second, transitions between these states are defined by introducing four basic operations. Then, possible sequences of crossing state transitions, i.e. possible manipulation processes, can be generated once the initial and the obje...
متن کاملKnot Fingerprints Resolve Knot Complexity and Knotting Pathways in Tight Knots
Knot fingerprints provide a fine-grained resolution of the local knotting structure of tight knots. From this fine structure and an analysis of the associated planar graph, one can define a measure of knot complexity using the number of independent unknotting pathways from the global knot type to the short arc unknot. A specialization of the Cheeger constant provides a measure of constraint on ...
متن کاملIntrinsic Linking and Knotting in Virtual Spatial Graphs
We introduce a notion of intrinsic linking and knotting for virtual spatial graphs. Our theory gives two filtrations of the set of all graphs, allowing us to measure, in a sense, how intrinsically linked or knotted a graph is; we show that these filtrations are descending and non-terminating. We also provide several examples of intrinsically virtually linked and knotted graphs. As a byproduct, ...
متن کامل